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Abstract

The paper presents a numerical investigation of bu�et ¯ows using various turbulence models, including linear and non-linear

low-Re eddy-viscosity models (EVM). The accuracy of the models is assessed against experimental data for transonic ¯ows around

the NACA-0012 aerofoil. The study shows that non-linear two-equation models in conjunction with functional cl coe�cient for the

calculation of the eddy-viscosity (henceforth labelled NL-cl), provide satisfactory results for transonic bu�et ¯ows. The compu-

tations also reveal that the Spalart±Allmaras one-equation model provides comparable results to the NL-cl models, while larger

inaccuracies are introduced by linear and non-linear models based on constant cl coe�cient. Moreover, the bu�et onset boundaries

are similarly predicted by the one-equation and NL-cl models. The study has been performed using a second-order time accurate

implicit-unfactored method which solves in a coupled fashion the Navier±Stokes and turbulence transport equations. The spatial

discretisation of the equations is obtained by a Riemann solver in combination with a third-order upwind scheme. Ó 2000 Begell

House Inc. Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

Signi®cant e�orts to validate turbulence models in steady
aerodynamic ¯ows have been spent over the past decade (e.g.,
Haase et al., 1993; Bardina et al., 1997; Leschziner, 1998;
Barakos and Drikakis, 1998a, 2000b, amongst others). How-
ever, much less information has been accumulated in connec-
tion with the validation of turbulence models in unsteady
aerodynamic ¯ows featuring bu�et and/or dynamic-stall.
Concerning dynamic-stall, recent studies (Barakos and Dri-
kakis, 1999, 2000a) using a variety of low-Re linear and non-
linear eddy-viscosity models (EVM), have been performed.
These studies revealed that non-linear EVMs can indeed o�er
better accuracy than algebraic and one-equation models, in
predicting dynamic-stall both in subsonic and transonic
¯ows over pitching and oscillating aerofoils. On the other
hand, bu�et computations have so far been performed by
using, mainly, algebraic turbulence models (Edwards, 1996;
Girodroux-Lavigne and LeBalleur, 1988). Therefore, the pre-
sent study has been initiated in order to assess more advanced
turbulence closures in transonic bu�et ¯ows around aerofoils.

Transonic bu�et appears in many aeronautical applications
such as internal ¯ows in compressor passages, around turb-
omachinery blades as well as in external ¯ows over aircraft
wings. The aerodynamic performance in these applications
depends strongly on the unsteady shock/boundary-layer in-
teraction. The latter may change position around the aerofoil
due to the self-excited shock oscillations. Accurate predictions
of such ¯ow phenomena is of signi®cant technological im-
portance and their simulation remains a challenging problem
due to the complex physics involved. The accuracy of the
numerical predictions is dictated both by the accuracy/prop-
erties of the numerical discretisation scheme as well as by the
accuracy of the turbulence model. The present work focuses on
investigating accuracy issues associated with the turbulence
model.

Experience from steady ¯ows using algebraic turbulence
models has shown that such modelling of turbulence does not
provide satisfactory results in most cases. Linear low-Re two-
equation models (Launder and Sharma, 1974; Nagano and
Kim, 1988) seem to o�er the best balance between accuracy
and computational cost, but are not able to capture e�ects
arising from normal-stress anisotropy and are less able to
predict separation in adverse pressure gradient and shock/
boundary-layer interaction (Liou and Shih, 1996; Marvin and
Huang, 1996).

At present non-linear models seem to be one of the prin-
cipal routes for advanced modelling of turbulence beyond the
linear EVM. Such models take into account streamline cur-
vature and swirl, as well as history e�ects. So far, non-linear
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models have been validated for steady ¯ows, mainly two-di-
mensional and incompressible, (e.g., Craft et al., 1996,
amongst others), while more recently experience has been ac-
quired from applications to compressible ¯ows with shock/
boundary-layer interaction (e.g., Barakos and Drikakis,
2000b).

In the present work, various turbulence closures including
algebraic, one-equation as well as linear and non-linear low-Re
two-equation models, are validated in transonic bu�et ¯ows.
The assessment of the models is performed against experi-
mental results for bu�et around the NACA-0012 aerofoil at
Reynolds number Re � 107, a range of Mach numbers between
0:7 and 0:85, and for incidence angles between 0° and 5°
(McDevitt and Okuno, 1985).

2. Numerical method

The numerical simulations have been carried out using an
implicit CFD solver (Barakos and Drikakis, 1998b, 1999) de-
veloped for unsteady and turbulent aerodynamic ¯ows. The
main feature of the method is the strong coupling of turbu-
lence models with the Navier±Stokes equations, via an implicit
unfactored scheme and a Riemann solver, the latter being used
in conjunction with a third-order upwind interpolation scheme
(Drikakis and Durst, 1994).

The compressible Navier±Stokes equations for a two-
dimensional curvilinear co-ordinate system �n; g�, in conjunc-
tion with the transport equations of the turbulence model, are
written in matrix form as

oU
ot
� oE

on
� oG

of
� oR

on
� oS

of
� H : �1�

U is the six-component vector of the conservative variables

U � J�q; qu; qw; e; qk; q~��T; �2�
where q is the density, u, w are the velocity components in the
x- and z-directions, respectively, e the total energy per unit
volume, k the turbulent kinetic energy and ~� is the isotropic

part of the turbulent dissipation rate (in the case of the
Launder±Sharma model).

The matrix H � J ~H has non-zero entries for the source
terms of the turbulence model equations. J is the Jacobian of
the transformation from Cartesian to curvilinear co-ordinate
system. E, G and R, S are the inviscid and viscous ¯uxes, re-
spectively. The total energy per unit volume e is given by
e � qi� �1=2�q�u2 � w2� � qk, where i is the speci®c internal
energy. The pressure is calculated by the ideal gas equation of
state.

A third-order upwind scheme in conjunction with a char-
acteristic-based ¯ux averaging is used to calculate the inviscid
¯uxes at the cell faces (Eberle et al., 1992; Drikakis and Durst,
1994). Limiters based on the squares of pressure derivatives
have been used in detecting shocks and contact discontinuities.
An implicit-unfactored solver (Barakos and Drikakis, 1998b,
1999) has been employed for the solution of the equations. A
sequence of approximations qm such that: limm>1 qm ! U n�1 is
de®ned between two time steps n and n� 1. Using implicit time
discretization and after linearizing the ¯uxes around the sub-
iteration state m the following form is derived:

Dq
Dt
� �Am

invDq�n � �Cm
invDq�f ÿ �Am

visDq�n ÿ �Cm
visDq�f � RHS;

�3�
where

RHS � ÿ qm ÿ U n

Dt

�
� Em

n � Gm
f ÿ Rm

n ÿ Sm
f ÿ H m

�
; �4�

Dq � qm�1 ÿ qm �5�
and

Ainv � oE
oU

; Cinv � oG
oU

; Avis � oR
oU

; Cvis � oS
oU

: �6�
At each time step the ®nal system of algebraic equations is
solved by a point Gauss±Seidel relaxation scheme. According
to the present method, the transport equations for the turbu-
lence model are solved coupled with the ¯uid ¯ow equations.

Notation

aij Reynolds stress anisotropy tensor,
aij � u0iu

0
j=k ÿ �2=3�dij

c chord length of the aerofoil
cl lift coe�cient
cm quarter-chord moment coe�cient
e total energy of the ¯uid per unit volume
E, G, Ev, Gv inviscid and viscous ¯uxes, in curvilinear

coordinates
~E, ~G, ~Ev, ~Gv inviscid and viscous ¯uxes, in Cartesian

coordinates
H source term due to turbulence modelling
J Jacobian of transformation from Cartesian

to curvilinear coordinates
k turbulent kinetic energy, k � u0iu0i=2
M freestream Mach number
p pressure
Pr Prandtl number, Pr � qlcp=k
Prt turbulent Prandtl number, Prt � qltcp=k
t time
Re Reynolds number, Re � qUc=l
~Rt near-wall Reynolds number, ~Rt � qk2=l~�
S strain invariant, S � ���������������

SijSij=2
p

Sij strain tensor, Sij � oui=oxj � ouj=oxi

U velocity
ui mean velocity component in the xi-direction,

�i � 1; 2�
ÿqu0iu0j Reynolds-stress tensor
xi cartesian coordinates �i � 1; 2; x � x1; z � x2�

Greeks
a angle of attack
� dissipation rate of k
~� isotropic dissipation rate of k, ~� � �ÿ �̂,

�̂ � 2�l=q��o ���
k
p

=oxj�2
l coe�cient of dynamic viscosity
lT eddy-viscosity
q density
s time in the curvilinear coordinate system
sij total stress tensor
slij molecular stress tensor
stij turbulent Reynolds stress tensor
ni; f curvilinear coordinates
X vorticity invariant, X � �����������������

XijXij=2
p

Xij vorticity tensor, Xij � oui=oxj ÿ ouj=oxi

x speci®c turbulent dissipation rate, turbulent
frequency, x � �=k
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This strategy provides fast convergence and compact numeri-
cal implementation.

For unsteady ¯ow simulations the discretisation of the time
derivative is obtained by a second-order scheme (Barakos and
Drikakis, 1999)

1:5U n�1 ÿ 2U n � 0:5U nÿ1

Ds

� ÿ En�1
n

�
� F n�1

g ÿ Rn�1
n ÿ Sn�1

g ÿ H n�1
�
: �7�

In time accurate computations, the time marching must be
performed using the same time step in all cells of the compu-
tational domain. This global time step is de®ned for a given
CFL number by

Ds6Dsmax

� min J
CFL

kmax � 2�lcp=Pr�
��������������������������������������
�n2

x � n2
z � f2

x � f2
z �

q
0B@

1CA
i;k

; �8�

where kmax is the maximum eigenvalue calculated using the
solution from the previous time step.

3. Turbulence modelling

In the present study, the following models have been em-
ployed: the algebraic Baldwin and Lomax (1978) model, the
one-equation model of Spalart and Allmaras (1992), the
Launder and Sharma (1974) and Nagano and Kim (1988)
linear k±� models, as well as the k±x version (So®alidis and
Prinos, 1997) of the non-linear eddy-viscosity model of Craft
et al. (1996).

In the case of linear EVM the stress tensor sij is modelled
using the Boussinesq approximation

sij � sl
ij � sR

ij ; �9�
where

sl
ij � l

oui

oxj

�
� ouj

oxi

�
ÿ 2

3
l

ouk

oxk
dij; �10�

sR
ij � lT

oui

oxj

�
� ouj

oxi

�
ÿ 2

3
lT

ouk

oxk
dij ÿ 2

3
qkdij �11�

and lT is the eddy-viscosity.
Non-linear EVM use an expansion of the Reynolds stress

components in terms of the mean strain-rate and rotation
tensors

Sij � Ui;j

ÿ � Uj;i

�
=2; Xij � Ui;j

ÿ ÿ Uj;i

�
=2: �12�

In the case of the non-linear k±� EVM of Craft et al. (1996) a
cubic expansion for the anisotropy of the Reynolds stress
tensor, aij � uiuj=k ÿ �2=3�dij, is employed

aij � ÿ lT

qk
Sij � c1

lT

q~�
SikSkj

�
ÿ 1

3
SklSkldij

�
� c2

lT

q~�
XikSkj

ÿ � XjkSki

�� c3

lT

q~�
XikXjk

�
ÿ 1

3
XlkXlkdij

�
� c4

lTk
q~�2

SkiXlj

ÿ � SkjXli

�
Skl

� c5

lTk
q~�2

XilXlmSmj

�
� SilXlmXmj ÿ 2

3
SlmXmnXnldij

�
� c6

lTk
q~�2

SijSklSkl � c7

lTk
q~�2

SijXklXkl: �13�

This cubic expansion has been utilized here to calculate the
components of the Reynolds-stress tensor ÿq uiuj. In the
above, Sij and Xij are the strain and vorticity tensors, while ~S
and ~X are their normalized invariants

~S � k
~�

���������������
SijSij=2

q
; ~X � k

~�

�����������������
XijXij=2

q
; �14�

and the coe�cients ci take the values: c1 � ÿ0:1; c2 � 0:1;
c3 � 0:26; c4 � ÿ10c2

l. The eddy viscosity is calculated by
lT � clqfl�k2=~��, where

cl � 0:3 1ÿ exp ÿ 0:36 exp 0:75g� �f g� �
1� 0:35g1:5

; �15�

fl � 1ÿ exp

8<:ÿ ~Rt

90

 !1=2

ÿ
~Rt

400

 !2
9=;; �16�

g � max ~S; ~X
� �

: �17�

Such functional form of cl was found to be bene®cial in ¯ows
far from equilibrium and similar conclusions have also been
reported by Liou and Shih (1996), Huang (1999) and Bardina
et al. (1997) for a variety of compressible ¯ows. The non-linear
eddy-viscosity model of So®alidis and Prinos (1997) is actually
the k±x version of the non-linear k±� model of Craft et al.
(1996).

4. Simulation of transonic bu�et

4.1. Test cases

Computations were carried out for the experimental cases
of McDevitt and Okuno (1985). Their experiments have been
performed for the NACA-0012 aerofoil at Mach numbers
between 0:7 and 0:8, angles of incidence less than 5° and Rec

number between 1 and 14 millions. McDevitt and Okuno
identi®ed the incidence-angle and Mach number as the most
important parameters for the bu�et onset. Their wind-tunnel
results are particularly suitable for validating CFD codes
because they are free of wall e�ects in contrast to previous
experimental studies (McDevitt et al., 1976).

McDevitt and Okuno (1985) organized their experiments in
six sets and the corresponding parameters are shown in Table 1.
For the sets numbered as 4, 5 and 6, bu�et was reported and,
consequently, these sets were considered in the present work.
As has also been reported by Mateer et al. (1992), the e�ects of
boundary-layer tripping on the obtained results for Re about
106, is negligible. Therefore, in the present study computations
were carried out for Reynolds number Re � 106 which pro-
vides fully turbulent ¯ow (McDevitt and Okuno, 1985).

Table 1

Nominal conditions for the experiments of McDevitt and Okuno

(1985)

Set Incidence a (deg) Mach number Re (�10ÿ6)

1 2 0.75 1.2±13.9

2 0 0.75 4.0±12.2

3 0 0.8 1.2.0±12.1

4 1 0.8 1.0±10.3

5 2 0.775 1.0±9.9

6 4 0.725 1.0±9.3
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4.2. Results

Flow unsteadiness around a lifting surface may originate
from the motion of the boundary or from unsteady free-stream
conditions. However, in the case of bu�et the induced un-
steadiness is due to ¯ow non-linearities associated with certain
combinations of Re, Mach number, and angle of incidence. In

the case of transonic bu�et, the self-excited shock oscillations
are also associated with shock/boundary-layer interaction and
¯ow separation. It is thus important for a turbulence model to

Table 2

Details of the computational grids employed in the calculations; grid

G4 was selected for bu�et calculations

Grid i-direction k-direction Far-®eld location

G1 180 60 5c

G2 241 80 5c

G3 291 85 7c

G4 361 90 7c

Fig. 1. Pressure coe�cient distribution around the NACA-0012

aerofoil: (a) grid size e�ects, (b) comparisons between linear turbulence

models (c) comparisons between non-linear turbulence models; The

experimental data are from McDevitt and Okuno (1985) �Re � 107,

M � 0:775, a � 4°�.

Fig. 2. Bu�et onset for the NACA-0012 aerofoil (Rec � 107, M �
0:775, a � 4°). Solution obtained using the SA model (crosses) and the

non-linear k±x model (squares). The experimental data are from

McDevitt and Okuno (1985). SIO stands for shock-induced oscillation.

Fig. 3. Oscillating airloads for the NACA-0012 aerofoil: (a) lift coef-

®cient, (b) moment coe�cient, (c) lift coe�cient for a long time interval

using the NL k±x model �Re � 107, M � 0:775, a � 4°�.
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predict accurately the separation induced by the interaction of
the shock with the boundary layer and, subsequently, the
bu�et onset.

In the present study, several computational grids have been
employed to ensure grid-independent solutions and their de-
tails are given in Table 2. In addition, calculations have been
performed for various dimensions of the computational do-
main to ensure independence of the solution from the far-®eld
boundary conditions. For bu�et predictions the grid G4
(Table 2) was used.

In Fig. 1, the Cp distributions, for M � 0:775 and a � 4°,
using various closures and di�erent grids are compared with
the experimental results. For this Mach number and incidence
angle, the ¯ow has been found (McDevitt and Okuno, 1985) to
be steady and all turbulence models predicted steady ¯ow, as
well. As can be seen, none of the models was able to capture
exactly the experimental shock position. The non-linear
models were used in conjunction with both functional cl (Eq.
(15)) and constant cl (cl � 0:09) coe�cient. When the models
were employed with a constant cl, were found to give results
(Fig. 1(c)) similar to the ones obtained by the linear k±� and
algebraic models (Fig. 1(b)). The Launder±Sharma and Nag-
ano±Kim models provided similar predictions (plots are not
shown here). The results obtained by using functional cl were
in better agreement with the experimental data. Computations
without the non-linear expansion revealed that the models
predictions were mainly dominated by their damping functions
and functional cl, and it seems that the anisotropic stress ex-
pansion does not play any important role in this case. The
results using the Spalart±Allmaras model were comparable to
those obtained by the non-linear models using functional cl.
Similar conclusions about the e�ects of varying cl coe�cient
on turbulence models performance have also been reported in

the past for steady compressible ¯ow computations (Bardina
et al., 1997; Huang, 1999). All linear k±� models employed in
this study predicted the shock position shifted downstream and
underestimated the length of separation region. The same was
also the case for the algebraic Baldwin±Lomax model
(Fig. 1(b)).

In Fig. 2, comparison of numerical and experimental results
for the bu�et onset is presented. There is a well-de®ned region
of Mach and incidence angle where bu�et occurs. Initially,
four computations (Fig. 2) were performed at conditions below
the experimentally reported bu�et onset and steady-state so-
lutions were achieved (symbols in Fig. 2 labelled ``no SIO
(shock-induced oscillation)''). Afterwards, the incidence-angle
was slowly increased to obtain unsteadiness and it was found
that after the initial peak of the Cl curve (Fig. 3) the compu-
tations resulted either in periodic loads, thus indicating bu�et
(symbols in Fig. 2 labelled ``SIO''), or in steady-state ¯ow. In
the latter case, the computations were repeated for a higher
incidence-angle until bu�et is captured. Once bu�et was pre-
dicted, the incidence-angle was again decreased and the com-
putation was repeated to check whether the experimental
boundary (solid line in Fig. 2) for bu�et onset could be closer
approached. Computations were performed for a long time
interval to verify that almost periodic loads are obtained for
the bu�et conditions (see Fig. 3(c)).

For all combinations of Mach number and incidence angle
considered here, the linear k±� models led to a steady solution
(Fig. 3(a), (b)), thus failing to predict bu�et. As can be seen in
Fig. 2, the computations predict the bu�et onset boundary
slightly shifted to higher incidence angles and Mach number.
This is similar to what Girodroux-Lavigne and LeBalleur
(1988) have obtained. Edwards (1996), however, reported
results closer to the experimental data using an inverse

Fig. 4. Mach number ®eld around a NACA-0012 aerofoil at di�erent time instants during the bu�et development.
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boundary-layer method and the Baldwin±Lomax (1978)
model. He also found that bu�et occurs at an angle a � 0° and
Mach number close to 0.83.

The Mach number ®eld is shown in Fig. 4 at di�erent time
instants during the bu�et development and it is clear that the
shock formed on the suction side of the pro®le changes position
in time. A much weaker shock is predicted on the pressure side.
The separation region close to the trailing edge of the pro®le is
shown in Fig. 5. Initially, the separation region increases and
extends both upstream and downstream of the trailing edge of
the aerofoil. As the ®rst bubble grows (Fig. 5(b)), a second tiny
bubble is formed downstream of the shock (Fig. 5(c)) and starts
growing again to repeat the unsteady cycle.

5. Conclusions

Validation and assessment of various turbulence closures
were performed in transonic ¯ows around an aerofoil featuring
bu�et. The results revealed that a functional cl coe�cient
signi®cantly in¯uences the models performance. The non-
linear expansion of the shear stress does not seem to improve
the predictions. The e�ects of cl was tested in conjunction with
the non-linear models because these models have been cali-
brated for a functional cl. It would be worthwhile to use a
functional cl in conjunction with a linear k±� or k±x model,
but this certainly requires to calibrate ®rst the models coe�-
cients in simpler test cases. Furthermore, the results obtained
by the Spalart±Allmaras one equation model were found to be
comparable to those obtained by the non-linear models based
on functional cl.

The bu�et computations were found to be computationally
more demanding than dynamic-stall computations (Barakos
and Drikakis, 1999, 2000a) due to the high resolution in time
required to resolve the ¯ow unsteadiness. In addition, to predict
the bu�et onset several computations need to be performed at
di�erent conditions and compare the predicted loads.

Future research needs to address not only modelling issues,
but also numerical issues such as the e�ects of discretization
schemes on bu�et predictions in transonic ¯ows.
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